
EEM 486 SPRING 2022 LAB-5

ESKISEHIR TECHNICAL UNIVERSITY
DEPARTMENT OF ELECTRICAL AND ELECTRONICS

ENGINEERING

LAB-5
SINGLE-CYCLE CPU

1 Introduction

In this lab, you will implement a single-cycle MIPS CPU. You can adapt some of the
components you implemented on previous labs for this CPU architecture. You will implement it
step by step, beginning a CPU that executes a few basic instructions.

2 Single-cycle CPU Description

The single-cycle microarchitecture executes an entire instruction in one cycle. So, the cycle
time is limited by the slowest instruction.

We will divide our microarchitecture into two interacting parts: the datapath and the control.
The datapath operates on words of data. It contains structures such as memories, registers,
ALUs, and multiplexers. The state elements of the datapath are introduced in Figure 1. MIPS is a
32-bit architecture, so we will use a 32-bit datapath. The control unit receives the current
instruction from the datapath and tells the datapath how to execute that instruction.
Specifically, the control unit produces multiplexer select, register enable, and memory write
signals to control the operation of the datapath.

We will start designing the CPU by connecting the state elements from Figure 1 with
combinational logic that can execute the various instructions. Control signals determine which
specific instruction is carried out by the datapath at any given time. The controller contains
combinational logic that generates the required control signals based on the current
instruction.

EEM 486 SPRING 2022 LAB-5

Figure 1: State Elements of the MIPS Processor

Register
File

clk
we3

wa3

wd3

5

32

rd1

rd2

ra1
5

ra2
5 32

32

Instruction
Memory rd

32
6

a
Data

Memory

clk
we

rd
32

32
a

32
wdPC’ Program

Counter rd
3232

PC

clk
reset

2.1 Program Counter

The program counter is an ordinary 32-bit register. Its output, PC, indicates to the current
instruction. Its input, PC’, indicates the address of the next instruction. The reset input signal
provides us to reset the PC register asynchronously. If reset input is 1 then PC is equal to 0.
Otherwise, on the rising edge of the clock, input is loaded to the output.

2.2 Instruction Memory

The instruction memory has a single read port.1 It takes a 6-bit instruction address input, a,
and reads the 32-bit data, instruction, from that address onto the read data output, rd. It
consists of array of std_logic_vector. If there is a change on the address, the data on this
address is loaded to the rd output. You can define an array as following.

type ROM_Array is array (0 to 63) of std_logic_vector(31 downto 0);

2.3 Register File

The 32-element x 32-bit register file has two read ports and one write port. The read ports
take 5-bit address inputs, ra1 and ra2, each specifying one of 25 = 32 registers as source
operands. They read the 32-bit register values onto read data outputs rd1 and rd2, respectively.
The write port takes a 5-bit address input, wa3, a 32-bit write data input, wd3, a write enable
input, we3 and lastly a clock. If the write enable is 1, the register file writes the data into the
specified register on the rising edge of the clock. The register file is read combinationally. If
there is a change on the address, the new data is written on the output rd buses. The read
process does not wait the rising edge of the clock.

EEM 486 SPRING 2022 LAB-5

2.4 Data Memory

The data memory has a single read/write port. If the write enable, we, is 1, it writes data wd
into address a on the rising edge of the clock. If the write enable is 0, it reads address a onto rd.
Read operation is performed combinationally. You can easily define a memory array as
following for the data memory.

type ram_type is array (0 to 255) of std_logic_vector(31 downto 0);

2.5 Read and Write Process

The instruction memory, register file, and data memory are all read as combinational. In other
words, if the address changes, the new data appears at rd after some propagation delay. No
clock is involved. They are written only on the rising edge of the clock. The state of the system
is changed only at the clock edge. The address, data, and write enable must setup sometime
before the clock edge and must remain stable until a hold time after the clock edge.

EEM 486 SPRING 2019 LAB-5

3 Single-Cycle Datapath

The figure given below shows the datapath of the MIPS processor. After you finish writing the components inside the datapath,
you will connect them according to the figure. The datapath given here provides just a few instructions. If you extend your
instruction set, you should change or add some components into this design.

Figure 2: Datapath of the MIPS Processor

Register
File

clk
we3

wa3

wd3

5

32

rd1

rd2

ra1
5

ra2
5 32

32

Data
Memory

clk
we

rd
32

32
a

32
wdMUX2d0

d1

32

32

32y
s MUX2d0

d1

32

32

32y
s

MUX2d0

d1

5

5

32y
s

Instruction
Memory rd

326
a

4
ADDER

a

b

32

32

32y

ADDER
a

b

32

32

32y

Instr

15:0

25:21

20:16

SL2a
32 32y

15:11

20:16

32ALU

a
b

result

32
32 zero

alucontrol3 ALUResult

WriteData

MemWrite

3

ALUControl (2:0)ALUSrcRegDstRegWrite

MUX2d0

d1

32

32

32y
s

MemtoReg

Zero

Branch

PCSrc

SIGNEXTa
16 32

y

CLK

CLK

CLK
SrcA

SrcB

WriteReg(4:0)

SignImm

PCBranch

PCPlus4

PC’ Program
Counter rd

3232

PC

clk
resetRESET

3.1 The Components of the Datapath

The pink colored components are the components of the datapath. They are all combinational systems.

3.1.1 Multiplexers

The datapath consists of 2x1 components. The multiplexers are combinational circuits that select binary information from one of the inputs according to the select input and
direct it to a single output line. The selection of a particular input line is controlled by a set of selection lines. Normally, there are 2𝑛𝑛 input lines and n selection lines whose
bit combinations determine which input is selected.

EEM 486 SPRING 2022 LAB-5

Figure 3: Entity of the 2x1 Multiplexer

MUX2d0

d1

width

width

32y
s

3.1.2 ADDER

Adder performs addition operation on its operands combinationally. The figure given below shows the entity of the ADDER
component.

Figure 4: Entity of the ADDER

ADDER
a

b

32

32

32y

3.1.3 Shift Left 2 Unit (SL2 Component)

The unit performs 2-bit shift left operation on its operand. The operation result is written on the output combinationally. The
result means actually that input operand is multiplied by 4.

Figure 5: Entity of the SL2

SL2a
32 32y

3.1.4 Sign Extender Unit (SIGNEXT Component)

Sign Extender Unit extends the 16-bit signal to the 32-bit signal. It assigns the 16 most significant bits of the output signal to the
0 or 1 depends on the sign bit of the input. If the sign bit, most significant bit, of the input is 1, then It puts 1 to the 16 most
significant bits of the output signal. If the sign bit, most significant bit, of the input is 0, then It puts 0 to the 16 most significant
bits of the output signal.

Figure 6: Entity of the SIGNEXT

SIGNEXTa
16 32y

EEM 486 SPRING 2022 LAB-5

3.1.5 ALU

The ALU component performs some arithmetic operations on its input operands depends on the Table 1. It shows which
operation is done according to the F(2:0). You are familiar to write the vhdl description of an ALU from previous labs. Zero input
is necessary for branch instructions. It indicates whether result of the ALU is zero or not.

Figure 7: Entity of the ALU

32ALU

a
b

result

32
32 zero

alucontrol3

Table 1: ALU Operations

F(2:0) Function
000 A AND B
001 A OR B
010 A + B
011 not applicable
100 A AND 𝐵𝐵�
101 A OR 𝐵𝐵�
110 A - B
111 SLT

EEM 486 SPRING 2022 LAB-5

4 Single-Cycle Control

Figure 8: Internal structure of the Control Unit

MAINDEC

op

memwrite
6 memtoreg

branch
alusrc
regdst

regwrite
aluop

ALUDEC
funct

6

alucontrol 3
aluop

Opcode (5:0)

Funct (5:0)

2

2

ALUOp (1:0)

Control
Unit

The control unit computes the control signals depends on the opcode and funct fields of the
instruction, Instr (31:26) and Instr (5:0) You can see necessary control signals attached to the
datapath on the Figure 2.
Most of the control information comes from the opcode, however for R-type instructions also
the funct field is used to determine the ALU operation. Therefore, we will simplify our design by
dividing our control unit design into two blocks of combinational logic, as shown in Figure 3.
The main decoder generates most of the output signals from the opcode. It also determines a 2-
bit ALUOp signal. The ALU decoder uses this ALUOp signal together with the funct field to
generate ALUControl. The meaning of the ALUOp signal is given in Table 1 below. Table 2 is a
truth table for the ALU decoder.

Table 2: ALUOp Encoding table

ALUOp Meaning
00 Add
01 Subtract
10 Look at funct field of the instr
11 Not applicable

EEM 486 SPRING 2022 LAB-5

Table 3: Truth table for ALU Decoder

ALUOp Funct ALUControl
00 X 010 (add)
X1 X 110 (subtract)
1X 100000 (add) 010 (add)
1X 100010 (sub) 110 (subtract)
1X 100100 (and) 000 (and)
1X 100101 (or) 001 (or)
1X 101010 (slt) 111 (set less than)

The meanings of the three ALUControl signals are given in Table 1. Because ALUOp is never 11,
the truth table can use don’t care’s X1 and 1X instead of 01 and 10 to simplify the logic. When
ALUOp is 00 or 01, the ALU should add or subtract, respectively. When ALUOp is 10, the
decoder examines the funct field to determine the ALUControl. Note that, for the R-type
instructions we implement, the first two bits of the funct field are always 10, so we may ignore
them to simplify the decoder.

Table 4 is a truth table for the main decoder that summarizes the control signals as a function
of the opcode. All R-type instructions use the same main decoder values; they differ only in the
ALU decoder output. For instructions that do not write to the register file such as sw and beq
nstructions, the RegDst and MemtoReg control signals are don’t cares (X). The address and data
to the register write port do not matter because RegWrite is not asserted. The logic for the
decoder can be designed using your favorite techniques for combinational logic design.

Table 4: The truth table of the Main Decoder

Instruction Opcode RegWrite RegDst ALUSrc Branch MemWrite MemtoReg ALUOp
R-Type 000000 1 1 0 0 0 0 10

lw 100011 1 0 1 0 0 1 00
sw 101011 0 X 1 0 1 X 00
beq 000100 0 X 0 1 0 X 01

EEM 486 SPRING 2022 LAB-5

5 MIPS Processor

The datapath and controller units of the MIPS processor are connected as shown in the Figure
below.

Figure 9: MIPS Processor

CONTROLLER

op
funct

memwrite
6
6

zero
memtoreg

pcsrc
alusrc
regdst

regwrite
jump

alucontrol 3

DATAPATH

clk
reset

instr

pc

aluout

writedata

readdata

32

32

32

32

32

memtoreg
pcsrc
alusrc
regdst
regwrite
jump
alucontrol3

zero

clk

reset

pc 32

instr32

memwrite

aluout

writedata

32

32

readdata32

6 Instruction Types

6.1 R-Type Instructions

The name R-type is short for register-type. R-type instructions use three registers as
operands: two as sources, and one as a destination. Figure 10 shows the R-type machine
instruction format.

Figure 10: R-type Machine instruction format

op

6-bits

rs

5-bits

rt

5-bits

R-type

rt

5-bits

shamt

5-bits

funct

6-bits

Table 5: R-Type instructions

Opcode Name Description Operation
100000 add add [rd] = [rs] + [rt]
100010 sub subtract [rd] = [rs] - [rt]
100100 and and [rd] = [rs] & [rt]
100101 or or [rd] = [rs] | [rt]
101010 slt set less than [rs] = [rt] ? [rd] = 1 : [rd] = 0

Your CPU is responsible to perform the R-type instructions given in Table 5.

EEM 486 SPRING 2019 LAB-5

6.2 I-Type Instructions

The name I-type is short for immediate-type. I-type instructions use two register
operands and one immediate operand. Figure 11 shows the I-type machine instruction
format.

Figure 11: I-type Machine instruction format

op

6-bits

rs

5-bits

rt

5-bits

imm

16-bits

I-type

Table 6: I-Type instructions

Opcode Name Description Operation
100011 lw load word [rt] = [Address]
101011 sw store word [Address] = [rt]

Your CPU is responsible to perform the I-type instructions given in Table 6.

6.3 J-Type Instructions

The name J-type is short for jump-type. This format is used only with jump instructions.
Figure 12 shows the J-type machine instruction format.

Figure 12: J-type Machine instruction format

op

6-bits

addr

26-bits

J-type

Table 7: J-Type instructions

Opcode Name Description Operation
000100 beq Branch if equal if ([rs] == [rt]) PC = Branch Address

Your CPU is responsible to perform the J-type instruction given in Table 7.

EEM 486 SPRING 2022 LAB-5

7 Procedure

In this lab, you will design a 32-bit single-cycle MIPS Processor. It consists of combinational
and sequential components.

• Firstly, you will design all of the components of the CPU architecture explained above.
• Connect them as described above.
• After completed the CPU, you will write an example program which includes the

instructions that you are responsible.
• You should simulate your completed design using ISE or another VHDL simulator to

prove the correctness of your design. Prepare a short report with the VHDL codes and
the simulation results.

• Bonus Grades are available for those who add extra instructions into his/her CPU
architecture.
Extra instructions are;

Table 8: Extra instructions

Opcode Name Description Operation Type
000010 j jump PC=Jump Address J-type
000101 bne Branch if not equal if ([rs]!=[rt]) PC = Branch Address I-Type
001000 addi Add immediate [rt] = [rs] + SignImm I-Type

 If you want, you can add more instructions into your CPU architecture to build complete MIPS
CPU.

EEM 486 SPRING 2022 LAB-5

8 Figures

Figure 1: State Elements of the MIPS Processor .. 2

Figure 2: Datapath of the MIPS Processor .. 4

Figure 3: Entity of the 2x1 Multiplexer .. 5

Figure 4: Entity of the ADDER ... 5

Figure 5: Entity of the SL2 ... 5

Figure 6: Entity of the SIGNEXT .. 5

Figure 7: Entity of the ALU .. 6

Figure 8: Internal structure of the Control Unit ... 7

Figure 9: MIPS Processor ... 9

Figure 10: R-type Machine instruction format .. 9

Figure 11: I-type Machine instruction format ... 10

Figure 12: J-type Machine instruction format ... 10

9 Tables

Table 1: ALU Operations ... 6

Table 2: ALUOp Encoding table .. 7

Table 3 : Truth table for ALU Decoder ... 8

Table 4: The truth table of the Main Decoder .. 8

Table 5: R-Type instructions ... 9

Table 6: I-Type instructions .. 10

Table 7: J-Type instructions .. 10

Table 8: Extra instructions .. 11

	Introduction
	Single-cycle CPU Description
	Program Counter
	Instruction Memory
	Register File
	Data Memory
	Read and Write Process
	Single-Cycle Datapath
	The Components of the Datapath
	Multiplexers
	ADDER
	Shift Left 2 Unit (SL2 Component)
	Sign Extender Unit (SIGNEXT Component)
	ALU
	Single-Cycle Control
	MIPS Processor
	Instruction Types
	R-Type Instructions
	I-Type Instructions
	J-Type Instructions
	Procedure
	Figures
	Tables

