
LAB 4 – COMBINATIONAL LOGIC CIRCUIT –

ALU DESIGN

ESKİŞEHİR TECHNICAL
 UNIVERSITY

DEPARTMENT OF ELECTRICAL AND

ELECTRONICS ENGINEERING

EEM 334 - Digital Systems II

1. PURPOSE

After implementing 4-bit adder on Nexys4 board in previous laboratory, now you are responsible for

making an ALU circuit whose block diagram and truth table are given below. Your ALU design must

take two 4-bit operands and it must perform Addition, Subtraction, Increment, Decrement, AND, OR,

XOR and NOT operations.

2. BACKGROUND

An Arithmetic and Logic Unit (ALU) is a combinational circuit that performs logical and arithmetic

operations on a pair of n-bit operands (in our case, A[3:0] and B[3:0]). Unless otherwise stated, you

can assume that the inputs A and B are signed, two’s complement numbers when they are presented

to the input of the ALU. The operations performed by an ALU are controlled by a set of operation-

select inputs. In this lab you will design an 4-bit ALU with 3 operation-select inputs, S[2:0]. Logical

operations take place on the bits that comprise a value (known as bitwise operations), while arithmetic

operations treat inputs and outputs as two’s complement integers.

The block diagram and the truth table for the ALU are shown below. You must write the VHDL code

for this simple 4-bit ALU according to the following functionality.

Figure 1: 4-bit ALU block and truth table

3. PROCEDURE

In this lab, you will design 8 modules individually (one of them 4-bit full adder is already designed).

Each operation must be designed on different VHDL modules and they can be used on “ALU_top”

module which is written on following pages.

Your module names must be like as shown below:

1. four_bit_adder.VHD

2. four_bit_subtract.VHD

3. four_bit_and.VHD

4. four_bit_or.VHD

5. four_bit_xor.VHD

6. increment.VHD

7. decrement.VHD

8. NotA.VHD

In addition, you should complete “ALU_top” module, which is given in the next page to combine your

eight components.

Figure 2 ALU_top module

The lab assistants will allow you to enter into the lab session ONLY IF you bring a pre-lab report

that shows you designed each of 8 modules, tested them individually by using Xilinx ISE simulator,

and verified each of them to be correct.

To summarize your jobs;

1. Design each of 8 modules and test them individually by using Xilinx ISE simulator.

2. Instantiate all components in ALU_top.

3. Choose the proper result for “final_out” with a multiplexer according to ”op_sel” select signal.

4. Create a UCF file and connect your inputs to switches, and flags to LEDs and 7-segment outputs to 7-

segment displays on the board.

5. Show your design burned into FPGA to the lab assistants.

You can also make your own complete design without using “ALU_top” as a template. This

template is to help you while you are designing this simple ALU.

Note That: You must be ready to implement the task which will be given to you during your

lab sessions.

ALU_top

libraryIEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity ALU_top is

Port (clk : in STD_LOGIC;

in1 : in STD_LOGIC_VECTOR (3 downto 0); --Firstoperand

in2 : in STD_LOGIC_VECTOR (3 downto 0); --Secondoperand

op_sel : in STD_LOGIC_VECTOR (2 downto 0); --Operationsellect

flag_out : out STD_LOGIC_VECTOR (2 downto 0); -- You should connect them to leds to see changes

seg_out : out STD_LOGIC_VECTOR (7 downto 0);

seg_sel : out STD_LOGIC_VECTOR (7 downto 0));

end ALU_top;

architecture Behavioral of ALU_top is

component four_bit_adder --Componentdeclerations

Port (in1 : in STD_LOGIC_VECTOR (3 downto 0);

in2 : in STD_LOGIC_VECTOR (3 downto 0);

sout : out STD_LOGIC_VECTOR (3 downto 0);

cout : out STD_LOGIC);

end component;

component four_bit_subtract

Port (a1 : in STD_LOGIC_VECTOR (3 downto 0);

a2 : in STD_LOGIC_VECTOR (3 downto 0);

out1: out STD_LOGIC_VECTOR (3 downto 0));

end component;

componentdecrement

Port (a1 : in STD_LOGIC_VECTOR (3 downto 0);

out1: out STD_LOGIC_VECTOR (3 downto 0));

end component;

componentincrement

Port (a1 : in STD_LOGIC_VECTOR (3 downto 0);

carry: out STD_LOGIC;

out1 : out STD_LOGIC_VECTOR (3 downto 0));

end component;

componentfour_bit_and

Port (a1 : in STD_LOGIC_VECTOR (3 downto 0);

a2 : in STD_LOGIC_VECTOR (3 downto 0);

out1: out STD_LOGIC_VECTOR (3 downto 0));
end component;

component four_bit_or

Port (a1 : in STD_LOGIC_VECTOR (3 downto 0);

a2 : in STD_LOGIC_VECTOR (3 downto 0);

out1: out STD_LOGIC_VECTOR (3 downto 0));

end component;
componentNotA

Port (a1 : in STD_LOGIC_VECTOR (3 downto 0);

out1: out STD_LOGIC_VECTOR (3 downto 0));

end component;

component four_bit_xor

Port (a1 : in STD_LOGIC_VECTOR (3 downto 0);

a2 : in STD_LOGIC_VECTOR (3 downto 0);

out1 : out STD_LOGIC_VECTOR (3 downto 0));

end component;

component seven_four

Port (in1 : in STD_LOGIC_VECTOR (3 downto 0);

in2 : in STD_LOGIC_VECTOR (3 downto 0);

in3 : in STD_LOGIC_VECTOR (3 downto 0);
in4 : in STD_LOGIC_VECTOR (3 downto 0);

clk : in STD_LOGIC;

dp : out STD_LOGIC;

sel : out STD_LOGIC_VECTOR (3 downto 0);
segment : out STD_LOGIC_VECTOR (6 downto 0));

end component;

--Signal declarations before begin block of architecture

signal add_out, sub_out, and_out, or_out : STD_LOGIC_VECTOR(3 downto 0);

signal xor_out, inc_out, dec_out, not_out, final_out, carry_show : STD_LOGIC_VECTOR(3 downto 0);

signaladd_carry, inc_carry: STD_LOGIC;

signal Z, V, C : STD_LOGIC; -- Flag bits

signal dp : STD_LOGIC;

signal sel_out_7 : STD_LOGIC_VECTOR(6 downto 0);

signal seg_sel_4 : STD_LOGIC_VECTOR (3 downto 0);

signal temp1, temp3 : STD_LOGIC;

signal temp2: STD_LOGIC_VECTOR(4 downto 0);

begin

carry_show<= "000" & C; --To showcarry bit on seven segment (concatenate)

A0 : four_bit_adder port map(); -- You should complete the component port maps

A1 : four_bit_subtract port map(); -- You should also design these modules

A2 : four_bit_and port map();

A3 : four_bit_or port map();

A4 : four_bit_xor port map();

A5 : increment port map();

A6 : decrement port map();

A7 : NotA port map();

A8 : seven_four port map (final_out, carry_show, "0000", "0000", clk, dp, seg_sel_4, seg_out_7);

-- Seven segment related part

seg_out <= (seg_out_7 & dp);

seg_sel <= "1111" & seg_sel_4;

-- Finding the flag_out output

temp1 <= ‘1’ when in2>in1 else

‘0’;

temp3 <= ‘1’ when in1 = “0000” else

‘0’;

V <= temp1 when op_sel = “001” else

temp3 when op_sel = “010” else

‘0’;

C <= add_carry when op_sel = “000” else

inc_carry when op_sel = “011” else

‘0’;

temp2 <= final_out & C;

Z <= ‘1’ when temp2 = “00000” else

‘0’;

flag_out <= Z & C & V; -- concatenation flags.

- -

- - Y o u r 4 - b i t 8 x 1 m u l t i p l e x e r c o d e w i l l b e h e r e

- -

- -

end Behavioral;

