

ESKİ̧EHIR TECHNICAL UNIVERSITY

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

EEM 334 - Digital Systems II

LAB 3 - COMBINATIONAL CIRCUIT DESIGN

1. PURPOSE

In this lab, you will learn design combinational circuit with different concurrent signal assignment techniques.

Inputs				Outputs		
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	0	1	0
0	1	0	1	1	1	0
0	1	1	0	0	0	0
0	1	1	1	0	0	1
1	0	0	0	0	0	0
1	0	0	1	0	1	0
1	0	1	0	0	0	0
1	0	1	1	0	1	0
1	1	0	0	1	0	1
1	1	0	1	1	0	0
1	1	1	0	0	0	1
1	1	1	1	0	1	0

Figure 1: Truth Table

Figure 2: Top Module

2. BACKGROUND

In this lab, you will use the signal assignment techniques

1. Concurrent signal assignment

Example: $\mathrm{A}<=\mathrm{B}$ and C ;
2. Conditional concurrent signal assignment

Example : $\mathrm{A}<=\mathrm{B}$ when $\mathrm{B}>2$ else
C when $B=2$ else
0;
3. Selected concurrent signal assignment

Example : with B select

$$
\begin{aligned}
\mathrm{A}<= & \mathrm{C} \text { when " } 00 \text { " } \\
& \mathrm{D} \text { when " } 01 " \\
& \mathrm{E} \text { when others; }
\end{aligned}
$$

3. PROCEDURE

In this lab, you will design 4 modules. Each module must provide following properties.

1. Find_X.vhd

- It has 4 inputs and each of them is 1 bit.
- It has 1 output for X and it is also 1 bit.
- Firstly, you must find simplified boolean expression for output X according to truth table given in Figure 1 (Hint: Use karnough map).
- Then, define X by using concurrent signal assignment technique ($<=$).

2. Find_Y.vhd

- It has 4 bit length 1 input and 1 bit output (Y).
- You must use conditional concurrent signal assignment (when-else) to obtain Y.

3. Find_Z.vhd

- It has 4 bit length 1 input and 1 bit output (Z).
- You must use selected concurrent signal assignment (with-select-when) to obtain Z .

4. Top.vhd

- In this module, you will implement the diagram given in Figure 2.
- A, B, C, D, S0 and S1 are 1 bit inputs.
- F is 1 bit output.
- You must concatenate $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D inputs to obtain input signal of Find_Y and Find_Z modules. (A is most significant bit.)
- Find_X, Find_Y and Find_Z modules are components of Top module. Outputs of these modules (X, Y and Z) will be connected to inputs of 4×1 multiplexer.
- Final output (F) is output of the multiplexer. It will be selected by S1 and S0.

Steps:

1. Implement Find_X, Find_Y and Find_Z modules which are specified above.
2. Write test bench and test these modules, individually.
3. Implement Top module and test it.
4. Show simulation result to your assistant.
5. Create UCF file. Connect A, B, C, D, S1 and S0 to switches and F to one of LEDs.
6. Load the design to FPGA.
7. Verify results and show them to your assistant.
8. Wait for task.
