
LAB 2 - INTRODUCTION TO VHDL AND
FPGA HARDWARE IMPLEMENTATION

ESKİŞEHİR TECHNICAL
 UNIVERSITY

DEPARTMENT OF ELECTRICAL AND

ELECTRONICS ENGINEERING

EEM 334 - Digital Systems II

1. PURPOSE

In this lab, you will learn to write VHDL codes and embed the designs written in VHDL to FPGA. In the first
experiment, four bit adder design was prepared with using schematic and VHDL design techniques. When the
designed object started to get bigger, VHDL design is much easier to build and making changes on design is
not complicated and time consuming according to schematic design techniques. So, next experiments we will
use VHDL to build circuits.

In this lab, we will implement four bit adder circuit on Nexys4 DDR board. We will connect inputs to the
switches and outputs to the seven segments. For implementation of four bit adder design, you must complete
the first experiment and you should learn basic properties of Nexys4 DDR board. You can find basic
information about board contents on background information section. For more information, you can visit
www.xilinx.com and download board's data sheet and example circuits.

2. BACKGROUND

VHDL is an acronym which stands for VHSIC Hardware Description Language. VHSIC is another acronym
which stands for Very High Speed Integrated Circuits.

Hardware description languages can be used in several ways; they can be an alternative way of representing a
circuit diagram for a digital circuit or a higher level algorithmic 'program' that solves a particular problem.
Such structural or behavioral representations are two ways of describing a model of a digital system.

VHDL can be used for documentation, verification, and synthesis of large digital designs. This is actually one
of the key features of VHDL, since the same VHDL code can achieve all three of these goals, thus saving a lot
of effort and reducing the introduction of errors between translating a specification into an implementation.

VHDL files are composed of Entity-Architecture pairs. The Entity portion of the file is analogous to a symbol
for the design. It describes all of the external connections to the design. The Architecture portion of the file is
analogous to the circuit diagram of the design. It defines the implementation of the design. Every VHDL
design will have the following general appearance:

--==
-- Library and package declarations
--==
LIBRARY ieee;
USE ieee.std_logic_1164.all;
--==
-- The following is the Entity portion
--==
ENTITY name IS --Keywords are capitalized(optional)

PORT(list of all external connections);
END name;
--==
-- The following is the Architecture portion
--==
ARCHITECTURE anyname OF name IS
-- This is the declarative part of the Architecture
-- Declare signals, enumeration types, constants here

http://www.xilinx.com/

BEGIN

-- This is where the implementation is described. Concurrent signal
-- assignments go here. Therefore this is called the concurrent part.
-- Order of the statements does not matter since all statements are executed -- concurrently.
PROCESS
-- The architecture may contain zero or more processes.
-- This is the declarative part of the process.
-- Variables used in the process are declared here.

BEGIN -- Beginning of the process implementation.
-- The process is implemented using sequential statements.
-- For example, FOR LOOP, IF-THEN-ELSE, CASE END
PROCESS;
END anyname;

In the above, note the use of -- to indicate a comment. “C-style” comments are not used in VHDL. In the
above keywords were capitalized but this is optional. The architecture may contain zero or more processes.
Outside of the process all statements are executed concurrently. This region is called the concurrent part of the
architecture. Statements in the concurrent part can be in any order because all statements are executed at the
same time. This mimics the operation of a real circuit where all gates evaluate their inputs at the same time.
Statements in a process on the other hand are executed sequentially. Therefore, the order of statements matters.
We will see later that processes are necessary to implement sequential circuits. A purely combinational circuit
requires only concurrent statements. Therefore, no processes are needed.

2.1.VDHL design
This design methodology is little different than schematic one. In this design methodology you describe the
digital circuit by using hardware description language. When designed object starting to get bigger HDL design
methodology advantages arise. Simulation of the designed object can be the same if you use “test bench
waveform” file to simulate designs. For this part of the experiment you don’t need to write VHDL code,
instead of that you will use available VHDL codes which you can download on website. You can also use the
codes below.

EXAMPLE CODE
Half adder
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity half_adder is
Port (a : in STD_LOGIC;

b : in STD_LOGIC;
s1 : out STD_LOGIC;
 c1: out STD_LOGIC);

end half_adder;

architecture Behavioral of half_adder is
begin

s1 <= (a XOR b);
c1 <= (a AND b); -- the logical operator "AND" and "XOR" is defined in VHDL.

end Behavioral;

Full Adder
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity full_adder is
Port (in1 : in STD_LOGIC;

in2 : in STD_LOGIC;
cin : in STD_LOGIC;
cout : out STD_LOGIC;
sout : out STD_LOGIC);

end full_adder;

architecture Behavioral of full_adder is
signal sum_low : std_logic;
signal c_low : std_logic;
signal c_high : std_logic;

component half_adder -- Components define up side of
Port (a : in STD_LOGIC; -- architecture begin end block

b : in STD_LOGIC;
s1 : out STD_LOGIC;
c1 : out STD_LOGIC);

end component;

begin

ha_low : half_adder
port map (a => in1,

b => in2,
s1 => sum_low,
c1 => c_low

);
ha_high : half_adder
port map (a => cin,

b => sum_low,
s1 => sout,
c1 => c_high

);
cout <= (c_low OR c_high);

end Behavioral;

4 Bit Adder
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity four_bit_adder is
Port (in1 : in STD_LOGIC_VECTOR (3 downto 0);

in2 : in STD_LOGIC_VECTOR(3 downto 0);
sout : out STD_LOGIC_VECTOR(3 downto 0);
cout : out STD_LOGIC);

 end four_bit_adder;

architecture Behavioral of four_bit_adder is
component full_adder
Port (in1 : in STD_LOGIC;

in2 : in STD_LOGIC;
cin : in STD_LOGIC;
cout : out STD_LOGIC;
sout : out STD_LOGIC);

end component;

signal w1,w2,w3 : STD_LOGIC;

begin
U1 : full_adder port map(in1(0), in2(0), '0', w1, sout(0));
U2 : full_adder port map(in1(1), in2(1), w1, w2, sout(1));
U3 : full_adder port map(in1(2), in2(2), w2, w3, sout(2));
U4 : full_adder port map(in1(3), in2(3), w3, cout, sout(3));

end Behavioral;

2.2.Nexsys4 DDR FPGA Board

The Nexys 4 board is a complete, ready-to-use digital circuit development platform based on the latest
Artix®-7 Field Programmable Gate Array (FPGA) from Xilinx®. The Artix-7 FPGA is optimized for high
performance logic and offers more capacity, higher performance, and more resources than earlier designs.
With its large, high-capacity FPGA (Xilinx part number XC7A100T-1CSG324C), generous external
memories, and collection of USB, Ethernet, and other ports, the Nexys 4 can host designs ranging from
introductory combinational circuits to powerful embedded processors. Several built-in peripherals, including
an accelerometer, temperature sensor, MEMs digital microphone, speaker amplifier, and several I/O devices
allow the Nexys 4 to be used for a wide range of designs without needing any other components.

Features:
• Xilinx Artix-7 FPGA XC7A100T-1CSG324C
• 15,850 logic slices, each with four 6-input LUTs and 8 flip-flops
• 4,860 Kbits of fast block RAM
• Six clock management tiles, each with phase-locked loop (PLL)
• 240 DSP slices
• Internal clock speeds exceeding 450 MHz
• On-chip analog-to-digital converter (XADC)
• 16Mbyte CellularRAM®
• Serial flash
• Digilent USB-JTAG port for FPGA programming and communication
• microSD card connector
• Ships with rugged plastic case and USB cable
• USB-UART Bridge
• 10/100 Ethernet PHY
• PWM audio output
• 3-axis accelerometer
• 16 user switches
• 16 user LEDs
• Two tri-color LEDs
• PDM microphone
• Temperature sensor
• Two 4-digit 7-segment displays
• USB HID host for mice, keyboards, and memory sticks
• Pmod for XADC signals
• Four Pmod ports
• 12-bit VGA output

You must correctly choose FPGA model on ISE because it compile the project and produce “.bit” file
according to FPGA which was chosen. You can see the parts of the board in the figure below.

Basic I/O pins that u may need to use is given in the figure below. Switches, LEDs and the seven segments
are essential for you. Pins of the I/O elements are also given in the figure.

Seven Segments
The Nexys4 DDR board contains two four-digit common anode seven-segment LED displays, configured

to behave like a single eight-digit display. Each of the eight digits is composed of seven segments arranged
in a “figure 8” pattern, with an LED embedded in each segment.

The LED control signals are time-multiplexed to display data on all four characters, as shown in below.
Present the value to be displayed on the segment control inputs and select the specified character by driving
the associated anode control signal Low. Through persistence of vision, the human brain perceives that all
four characters appear simultaneously, similar to the way the brain perceives a TV display.

To illuminate a segment, the anode should be driven high while the cathode is driven low. However, since
the Nexys4 DDR uses transistors to drive enough current into the common anode point, the anode enables
are inverted. Therefore, both the AN0..7 and the CA..G/DP signals are driven low when active.

A scanning display controller circuit can be used to show an eight-digit number on this display. This circuit
drives the anode signals and corresponding cathode patterns of each digit in a repeating, continuous
succession at an update rate that is faster than the human eye can detect. Each digit is illuminated just one-
eighth of the time, but because the eye cannot perceive the darkening of a digit before it is illuminated again,
the digit appears continuously illuminated. If the update, or “refresh”, rate is slowed to around 45Hz, a flicker
can be noticed in the display.

For each of the four digits to appear bright and continuously illuminated, all eight digits should be driven
once every 1 to 16ms, for a refresh frequency of about 1 KHz to 60Hz. For example, in a 62.5Hz refresh
scheme, the entire display would be refreshed once every 16ms, and each digit would be illuminated for 1/8
of the refresh cycle, or 2ms. The controller must drive low the cathodes with the correct pattern when the
corresponding anode signal is driven high. To illustrate the process, if AN0 is asserted while CB and CC are
asserted, then a “1” will be displayed in digit position 1. Then, if AN1 is asserted while CA, CB, and CC are
asserted, a “7” will be displayed in digit position 2. If AN0, CB, and CC are driven for 4ms, and then AN1,
CA, CB, and CC are driven for 4ms in an endless succession, the display will show “71” in the first two
digits. An example timing diagram for a four-digit controller is shown in the figure below.

3. PROCEDURE
1. Open Xilinx ISE
2. If a project already opened you can close it by choosing “close project” on file menu
3. Create a new VHDL project like schematic one an name it “four_bit_adder_HDL”
4. After creation complete add two VHDL file to the project by using “Add copy of sources” on “project”

menu.
5. Click ok to continue

6. Also you can create new VHDL module and copy the codes given above to build four bit adder circuit.

7. To test the design you should make simulation like schematic design. Add a VHDL test bench, Write the
input combinations and then simulate. Simulation result must be the same as schematic design.

8. We will add some other VHD files to the previous project to be able to see the results on seven segment
displays. To assign package pins, you need to have a user constraint file in your design.

To do that, we must add given VHDL codes and UCF file given below.
1) Top.vhd
2) Seven_four.vhd
3) Top.ucf

To assign the pins, you need a ucf file. To add this file, you can right click on your project, click on new
source and select the Implementation constraints file. The figure below shows the ucf file for this project.
NET “clk” LOC = E3 | IOSTANDARD = LVCMOS33
Is an example pin assignment. User defined a input pin named clk and want to assign it to 100 MHz clock
oscillator on the board. That pin is E3. The IOSTANDARD of that pin is LVCMOS33. This
IOSTANDARD is not necessary can be turned off by some configurations.

9. After assigning pins we can load design to FPGA with using IMPACT utility. To open IMPACT you
should double click “Configure Device (IMPACT)” on processes window under “Generate
Programming file” menu. Before doing that you must synthesize and implement design. If you don't
do that ISE do it automatically. Also you can open IMPACT independently on Xilinx Accessories
menu to load “.bit” file. If there is an error in your code, program will not synthesize your code.

10. When you click on the configure target device, a new screen will open (a warning may appear,
ignore it) and you need to double click on the boundary scan. A page with writing “Right click to
add device or initialize jtag chain” on it will appear. You will right click and select the initialize
chain after you connect your board to the computer and switch on the “ON/OFF” switch.

11. The program will find the device, then a box asking for adding a configuration file will appear.You
can say yes to it and a screen like the image above will open. You will select the .bit file and click on
the open button.

12. You will say no to the opened box. Right click on the device and click on the program and click ok on
the opened box. Finally this will program the board and your code will be executed. Sum of the two
inputs can be seen on the seven segments. You can change the switches to verify the
functionality of your design.

