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POWER AND ENERGY

The energy and power of a signal represent the energy or power delivered by the signal when it is
interpreted as a voltage or current source feeding a 1 Ω resistor.
Energy Content of x(t):

Ex = lim
T→∞

∫ T
2

− T
2

|x(t)|2dt =
∫ ∞

−∞
|x(t)|2dt (1)

Power content of x(t):

Px = lim
T→∞

1
T

∫ T/2

−T/2
|x(t)|2dt (2)

Practically all periodic signals are power-type and have power

Px =
1

T0

∫ α+T0

α
|x(t)|2dt (3)

▶ A signal is energy-type if Ex < ∞
▶ A signal is power-type if 0 < Px < ∞
▶ A signal cannot be both power-type and energy-type.
▶ A signal can be neither energy-type nor power-type
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ENERGY-TYPE SIGNALS

▶ For an energy-type signal x(t), we define the autocorrelation function

Rx(τ) = x(τ) ⋆ x∗(−τ)

=

∫ ∞

−∞
x(t)x∗(t − τ)dt

=

∫ ∞

−∞
x(t + τ)x∗(t)dt

(4)

▶ By setting τ = 0, we obtain its energy content,

Ex =

∫ ∞

−∞
|x(t)|2dt = Rx(0) (5)

▶ According to the autocorrelation theorem,

F{Rx(τ)} = |X(f )|2 = energy spectral density = Gx(f ) (6)

▶ Using Rayleigh’s theorem we have

Ex =

∫ ∞

−∞
|x(t)|2dt =

∫ ∞

−∞
|X(f )|2df (7)

▶ Energy content of x(t) is also equal to the integral of the energy spectral density over all
frequencies,

Ex =

∫ ∞

−∞
Gx(f )df (8)
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EXAMPLE: ENERGY-TYPE SIGNALS

Determine the autocorrelation function, energy spectral density, and the energy content of the signal
x(t) = e−αtu−1(t), α > 0.
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EXAMPLE
SOLUTION
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POWER-TYPE SIGNALS
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REVIEW: LINEAR AND TIME-INVARIANT (LTI) SYSTEMS
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PASSING POWER-TYPE SIGNALS THROUGH LTI SYSTEMS
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POWER-TYPE SIGNALS:
PERIODIC SIGNALS

signal.
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POWER-TYPE SIGNALS:
PERIODIC SIGNALS
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EXAMPLE: POWER TYPE SIGNALS

Determine the power contents of the signal x1(t) = A cos(2πf0t + θ), and signal x2(t) = Au−1(t).
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EXAMPLE:
SOLUTION
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EXAMPLE:

Classify the signal x(t) into energy-type signal, power-type signal and signal that is neither
energy-type nor power-type signal.
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HILBERT TRANSFORM

▶ Does not involve a change of domain. Signals are completely different.
▶ In Fourier, Laplace, and z-transforms, the resulting two signals are equivalent representations

of the same signal in terms of two different arguments, time and frequency.
▶ The Hilbert transform of a signal x(t) is a signal x̂(t) whose frequency components lag the

frequency components of x(t) by 90◦

x̂(t) = x(t) ⋆
1
πt

=
1
π

∫ ∞

−∞

x(τ)
t − τ

dτ (9)

F [x̂(t)] = X̂(f ) = −jsgn(f )X(f ) (10)

since 1
πt ⇐⇒ −jsgn(f ).

Amplitude (so the energy and the power) is not affected, only the phase
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EXAMPLE:

Determine the Hilbert transform of the signal x(t) = cos2πfct.
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EXAMPLE
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EXAMPLE

Determine the Hilbert transform of the signal x(t) = 2sinc(2t).
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HT PROPERTIES

▶ Evennes and Oddness. The Hilbert transform of an even signal is odd, and the Hilbert
transform of an odd signal is even.

▶ Sign Reversal. Applying the Hilbert-transform operation to a signal twice causes a sign
reversal of the signal,

ˆ̂x(t) = −x(t)

▶ Energy. The energy content of a signal is equal to the energy content of its Hilbert transform.
▶ Orthogonality. The signal x(t) and its Hilbert transform are orthogonal,∫ ∞

−∞
x(t)x̂(t)dt = 0 (11)
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LOWPASS AND BANDPASS SIGNALS

▶ A lowpass signal is a signal in which the spectrum (frequency content) of the signal is located
around the zero frequency.

▶ A bandpass signal is a signal with a spectrum far from the zero frequency.
▶ The frequency spectrum of a bandpass signal is usually located around a frequency fc, which is

much higher than the bandwidth of the signal
• (recall that the bandwidth of a signal is the set of the range of all positive frequencies

present in the signal).

Figure. Examples of bandpass signals
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PRE-ENVELOPE

▶ An analytic signal xp(t) or x+(t), corresponding to the real signal x(t), is defined as

xp(t) = x(t) + jx̂(t) (12)

where x̂(t) is the Hilbert transform of x(t).
▶ The envelope of a signal is defined mathematically as the magnitude of the analytic signal xp(t).
▶ The spectrum of the analytic signal is also of interest.
▶ Fourier transform of xp(t) is,

X+(f ) = Xp(f ) = X(f ) + j{−jsgn(f )X(f )} (13)

▶ The result is,
Xp(f ) = X(f )[1 + sgn(f )] (14)

▶ or

Xp(f ) =

{
2X(f ), f > 0
0, f < 0

(15)

▶ or
Xp(f ) = 2u(f )X(f ) (16)
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PRE-ENVELOPE
PROOF
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COMPLEX ENVELOPE

▶ xp(t), pre-envelope of x(t), can be written as,

xp(t) = x̃(t)ej2πf0t (17)

where x̃(t) is a complex-valued lowpass representation of bandpass signal (complex envelope).
▶ x̃(t) can be first found as,

x̃(t) = xp(t)e−j2πf0t (18)
▶ Second, we can find x̃(t) by using a frequency-domain approach to obtain X(f ), then scale its

positive frequency components by a factor of 2 to give Xp(f ), and translate the resultant
spectrum by f0 Hz to the left. The inverse Fourier transform of this translated spectrum is then
x̃(t).

Figure. Spectra pertaining to the formation of a complex envelope of a signal x(t). (a) A bandpass signal
spectrum. (b) Twice the positive-frequency portion of X(f ) corresponding to F [x(t)+ jx̂(t)] (c) Spectrum of x̃(t)21 / 28



IN-PHASE AND QUADRATURE COMPONENTS

In general, x̃(t) is a complex signal.
Let x̃(t) = xc(t) + jxs(t)

xc(t) : in-phase
xs(t) : quadrature components of the bandpass signal x(t).

xp(t) = x̃(t)ej2πf0t

= [xc(t) + jxs(t)] ej2πf0t

= [xc(t) + jxs(t)] [cos (2πf0t) + j sin (2πf0t)]
= [xc(t) cos (2πf0t)− xs(t) sin (2πf0t)]
· · ·+ j [xc(t) sin (2πf0t) + xs(t) cos (2πf0t)]

Recall xp(t) = x(t) + jx̂(t). Thus,

x(t) = xc(t) cos (2πf0t)− xs(t) sin (2πf0t)
x̂(t) = xc(t) sin (2πf0t) + xs(t) cos (2πf0t)

a bandpass signal can be represented in terms of two lowpass signals, namely, its in-phase and
quadrature components.
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EXAMPLE

Consider the real bandpass signal x(t) = cos(22πt). Find the pre-envelope, complex envelope,
in-phase and quadrature components of x(t). (f0 = 10 Hz)
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ENVELOPE (REAL ENVELOPE)

x̃(t) = xc(t) + jxs(t) (19)

a(t) = |x̃(t)| =
√

x2
c(t) + jx2

s (t) = |xp(t)| (20)

ϕ(t) = tan−1
(

xs(t)
xc(t)

)
(21)

Complex envelope x̃(t) in polar form:
x̃(t) = a(t)ejϕ(t) (22)

Pre-envelope:
xp(t) = x̃(t)ej2πf0t = a(t)ejϕ(t)ej2πf0t = x(t) + jx̂(t) (23)

x(t) = a(t) cos(2πf0t + ϕ(t)) (24)
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EXAMPLE:

Consider an RF pulse

x(t) = Arect
(

t
T

)
cos(2πfct)

where 1
T << fc. Find the pre-envelope, complex envelope and real envelope.
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EXAMPLE:
SOLUTION
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EXAMPLE:
SOLUTION
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